CHELATION AND NON-CHELATION DIRECTED

CLEAVAGE OF ACETALS

Robert C. Corcoran

Department of Chemistry, University of Nevada, Reno NV 89557

Abstract: Regioselectivity in the cleavage of chiral 2-substituted-3-methoxymethyl-1,3dioxanes can be controlled to a high degree by choice of an appropriate activating Lewis acid. However, the diastereoselectivity of the cleavage reactions is uniformly poor.

In recent years, chiral acetals derived from either $(\underline{B},\underline{R})$ - or $(\underline{S},\underline{S})$ -2,4-pentanediol have been shown to have considerable utility for the synthesis of secondary alcohols of high optical purity¹. Reaction of these acetals with a wide variety of carbon nucleophiles in the presence of a Lewis acid results in a highly diastereoselective cleavage of the acetal C-O bond to give a β -hydroxy ether. Subsequent degradation by a simple oxidation - elimination sequence yields the desired alcohol.

On the basis of recent results of cleavage reactions of related acetals,² it seems likely that the origin of the diastereoselectivity in the above reactions is a result of steric hindrance to Lewis acid activation of the acetal oxygen flanked by the R- group and the equatorial methyl group.³ It occurred to us that the cleavage of compounds such as <u>1</u> by carbon nucleophiles might be directed towards either of the two acetal C-O bonds by judicious choice of the activating Lewis acid (Scheme 1). Scheme 1

 A Lewis acid subject to chelation should be directed towards activation of the acetal oxygen adjacent to the methoxymethyl group (path A). On the other hand, a Lewis acid not subject to chelation should be forced by steric hindrance towards the distal acetal oxygen⁴. Ultimately, this strategy offers the possibility of selectively obtaining *either* enantiomer of a secondary alcohol from the *same* chiral acetal template. We report here our studies on the Lewis acid mediated cleavage of compound $\underline{1}$ with (CH₃)₅SiCN.

The compounds used in these studies were synthesized in an efficient manner from inexpensive (\underline{S})-malic acid by the route shown below⁶.

The bulk of our investigations on these systems have focussed on the reactions of the phenyl acetal <u>la</u> with $(CH_3)_3SiCN$. Four products are possible in these reactions: the two diastereomers resulting from chelation directed activation of the acetal (A/A'), and the two diastereomers resulting from chelation directed activation of the acetal (A/A'), and the two diastereomers resulting from cleavage of the acetal C-O bond distal to the methoxymethyl group (B/B'). The relative proportions of the various products were easily determined by integration of the cyanohydrin methine singlets of the products⁴⁷. The results of cleavage reactions under a number of different conditions are summarized in Table 1.

There are a number of features of note in these results. Use of TiCl₄ as the activating Lewis acid results in an extremely high level of selectivity for the cleavage product expected on the basis of a chelation directed activation of the acetal; from >250: 1 under "optimum" conditions (entry 1) to *ca*. 22:1 under conditions designed to give minimal selectivity (entry 3). However, even under the optimum conditions of entry 1 the diastereoselectivity of the reaction is modest, at best.

	Lewis Acid	Solvent	Temp. (°C)/ Time	A/A':B/B'	Diastereoselectivity (major regioisomer)
1	TiCl4	CH ₂ Cl ₂	-78°/2.5 hr.	≥250 : 1	1.6 : 1
2		CH ₂ Cl ₂ *	-78°/2.5 hr.	≥180 : 1	1.6 : 1
3		CH ₂ Cl ₂	+37°/0.5 min.	22 : 1	1.2 : 1
4		1:1 CH ₂ Cl ₂ / hexanes	-78°/2.5 hr.	≥250 : 1	1.3 : 1
5		1.6% THF/ CH ₂ Cl ₂	0°/0.33 hr.	17 : 1	2.2 : 1
6		5% THF/ CH ₂ Cl ₂	0°/2 hr.	11 : 1	2.4 : 1
7		8.9% THF/ CH ₂ Cl ₂	0°/1 hr.	9.5 : 1	2.4 : 1
8		20% THF/ CH ₂ Cl ₂	0°/6 hr.	6.2 : 1	1.6 : 1
9		5% CH ₃ CN/ CH ₂ Cl ₂	-20°/2 hr.	150 : 1	1.3 : 1
10	SnCl4	CH ₂ Cl ₂	-78°/4 hr.	1 : 2.2	2.2 : 1
11	BF ₃ ·Et ₂ O	CH ₂ Cl ₂	0°/0.33 hr.	1:3	3:1
12	ZnBr ₂	CH ₂ Cl ₂	25°/20 hr.	≤1 : 250	2.1 : 1

TABLE 1: Cleavage of acetal la with (CH₃)₃SiCN

Unless otherwise indicated, all reactions were run at ca. 0.04 M substrate and 0.4 M $(CH_3)_3SiCN$ in the indicated solvent. TiCl₄ and SnCl₄ (1.1 equiv. relative to substrate) were added as 1.0 M CH_2Cl_2 solutions via syringe pump over 30 minutes. Substrate and $(CH_3)_3SiCN$ were added to a suspension of ZnBr₂ in CH_2Cl_2 . Isolated yields of products ranged from 82 - 98%. Ratios of regio- and diastereomers were obtained from the crude products. Use of Mg(CF₃SO₃)₂, MgBr₂-etherate or ZnCl₂ gave no reaction within a 24 hour period.

⁴ Inverse addition: TiCl₄ added via syringe pump to substrate, followed by syringe pump addition of (CH₃)₃SiCN.

On the assumption that the reaction was proceeding by a combination of S_Nl and S_N^2 pathways we attempted to favor the latter by decreasing the solvent polarity; in fact, this led to a *decrease* in the diastereoselectivity (entry 4). On the other hand, increasing the solvent polarity through the addition of THF gave an initial increase in diastereoselectivity, followed by a decrease (entries 5 - 8). Both the regioselectivity and reaction rates in these latter experiments showed marked decreases with higher concentrations of THF. Within experimental error, cleavage of the acetal <u>lb</u> (R - CH₂Ph) under the conditions of entry 1 proceeded with the same regio- and diastereoselectivity found with <u>la</u>, although the reaction was considerably slower.

A second striking feature in the reactions of <u>la</u> is the dependence of the regioselectivity of the cleavage reaction on the identity of the activating Lewis acid. In particular, use of ZnBr₂ (entry 12) results in a complete reversal of the regioselectivity of the cleavage reaction as compared to TiCl₄. Similar chelation/non-chelation control by TiCl₄, SnCl₄, BF₃ and ZnBr₂ have been observed by Reetz in the addition of (CH₃)₃SiCN to a-amino aldehydes, although the degree of control in our system seems significantly greater⁸.

With the acetal template presently in hand we are able to control the regioselectivity of the cleavage reaction with (CH₃)₃SiCN with essentially complete fidelity. Efforts directed towards controlling the diastereoselectivity of these cleavage reactions are currently in progress.

Acknowledgements: Financial assistance from the following sources is gratefully acknowledged: Bristol-Myers Company Grant of Research Corporation (Grant 11077), The Center for Advanced Studies (Univ. of Nevada, Reno), and the Graduate School, University of Nevada, Reno (Junior Faculty Research Award).

REFERENCES

- Leading references to work in this area may be found in the following:

 a) Johnson, W. S.; Kelson, A. B.; Elliott, J. D., Tetrahedron Lett., 1988, 29, 3757.
 b) Mori, A.; Fujiwara, J.; Maruoka, K.; Yamamoto, H., J. Organometal. Chem., 1985, 285, 83.
 c) Normant, J. F.; Alexakis, A.; Chribi, A.; Mangeney, P., Tetrahedron, 1989, 45, 507.
 Other, related work:
 d) Seebach, D.; Imwinkelried, R.; Stucky, G., Angew. Chem., Int. Ed. Eng., 1984, 23, 556.
 e) Schreiber, S. L.; Reagan, J., Tetrahedron Lett., 1986, 27, 2945.
- a) cleavage of acetals derived from chiral 1,3-butanediols: Johnson, W. S.; Kelson, A. B.; Elliott, J. D., *Tetrahedron Lett.*, 1988, 29, 3757.
 b) relative cleavage rates of a number of substituted cyclic acetals: ref. 1c.
- 3. Selective Lewis acid complexation was first proposed for this system by Yamamoto and co-workers (ref. 1b). The same argument for selective cleavage of a related ketal was given by Mallory et al., J. Org. Chem., 1967, <u>32</u>, 1417. After the initial submission of this manuscript, a report by Denmark and co-workers appeared concerning the solution structures of complexes between BF₃ and number of substituted and unsubstituted cyclic acetals (Denmark, S. E.; Willson, T. M.; Almstead, N. G., <u>J. Am. Chem. Soc.</u>, 1989, <u>111</u>, 9258). Their findings offer convincing support for the preferential coordination of BF₃ to sterically less hindered acetal oxygens.
- 4. For a review of chelation and non-chelation controlled reactions see Reetz, M. T., Angew. Chem., Int. Ed. Eng., 1984, 23, 556.
- 5. Hanessian, S.; Ugolini, A.; Dube, D.; Glamyan, A., Can. J. Chem., 1984, 62, 2146.
- 6. All new compounds had spectral data (¹H NMR, ¹³C NMR, IR, MS) entirely consistent with the assigned structures. In addition, structural assignments were supported by subsequent chemical transformations (to be communicated elsewhere).
- 7. Chemical shifts of the benzylic cyanohydrin methine protons (in $C_{4}D_{6}$) are $\delta 4.56/4.54$ (A/A') and $\delta 5.43/5.16$ (B/B').
- 8. Reetz, M. T.; Drewes, M. W.; Harms, K.; Reif, W., Tetrahedron Lett., 1988, <u>29</u>, 3295.

(Received in USA 20 December 1989)